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Abstract. Within the framework of a phenomenological renormalization group theory. the 
calculation of the critical temperature of the three-dimensional spatially anisotropic king 
model is carried out. In the calculation, clusters n X n X m with n = 1 ,2 ,3  and 4 are used. 
The results are applied to estimate the reduced values of lhe interchain interactionsin quasi- 
one-dimensional Ising magnets. 

1. Introduction 

In the present paperwe shall consider a three-dimensional spin-4 king model on a simple 
cubic lattice with the coupling constant J along one spatial direction and with J' along 
the other two directions, with the assumption that the magnitude of J' < J. At present, 
the critical point of this model with fully isotropic interactions (J' = J) is known with 
great accuracy [l-31: kT,/J = 2.25574 -C 0.00007 (the percentage error is 0.003%). 
Another state to be considered is the anisotropic case. Calculations available here can 
hedividedinto twogroups. On theone hand, therearecalculationswithintheframework 
of the high-temperature series expansions ([4], and references therein), simulations by . 
the Monte Carlo method on stretched finite parallelepipeds n X n X n' (n' 2 n) with 
subsequent extrapolation of results to the infinite system by a finite size scalingscheme 
[5 ]  and calculations by the real-space renormalization group method [6]. These 
approaches work increasingly poorly the higher the anisotropy of the system. Thus, 
owing to the small number of terms in the high-temperature series, the results for 
kTcfJgiven in [4] are restricted to J'/J 3 0.01; because of the rather small stretch of the 
parallelepipeds (n'/n ,c 6) the estimates obtained in [5] for the temperature of a phase 
transition have a considerable error when J'/J < 0.1 and the renormalization group 
values [6] have been found only forJ'/J 2 0.1. On the other hand, there are calculations 
of the critical temperature based on the mean-field theory: the linear king chain in 
a mean field (here the intrachain interactions are taken exactly and the interchain 
interactions approximately) [7], the double king chain in the analogous field (part of 
interchain interactions is described rigorously) [SI and finally the extended Bethe- 
Peierls approximation (EBPA) when a cluster of the central chain and the four chains 
nearest to it is placed in a molecular field [9]. These approaches, unlike the previous 
ones, lead to satisfactory results only for high anisotropy of interaction. 

The phenomenological renormalization group method [lo, 111 combining the finite 
size scaling ideas and the transfer matrix technique is a powerful tool in investigating 

0953-8984/91/142373 + 05 $03.50 0 1991 IOP Publishing Ltd 2373 



2314 

phase transitions of various systems. Within this method, the critical temperature esti- 
mation is obtained from the renormalization group equation 
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( l / n )&(c“ ’ )  = P/(n + 1)IEn+1(7Y’) (1) 
connecting the correlation lengths of two clusters with transverse sizes n and n + 1 (the 
pair (n,  n + l)), with the correlation length itself being defined by the relation 

where Ay’ and A?’ are the largest and second-largest eigenvaluesof the transfer matrix 
of the subsystem correspondingly. Even if three terms in the sequence { T y ) }  are known, 
its relatively slow convergence can be, generally speaking, accelerated by using math- 
ematical methods for extrapolation. One of the best ways to do this is the alternating E- 

algorithm [ l l ]  for the first step of which the original sequence {al} is transformed into 
the new sequence by the formula 

5, = 1 / h ( A ~ ~ / A ~ ) )  (2) 

a!’)  = ( a l - l a l + ,  - a M a l - l  - 2 4 .  (3) 
In this paper we apply the phenomenological renormalization group method to 

the king model under discussion. As partially finite subsystems, we choose clusters 
n X n x m in the direction with a coupling J ,  we estimate the critical temperature for 
transverse sizes of clusters up to n = 4 and then from three points we extrapolate from 
equation (3) for each value J‘ /J .  We use the theoretical results obtained to determine the 
magnitude (without consideration of the sign) J’/J in the king magnets MCIz. 2NC,H5 
where M = CO, Fe. 

2. Calculation of the critical temperature 

The correlation length in the linear king chain (n = 1) is given as 

g l ( T )  = l/ln[coth(J/2kT)]. (4) 
Further, a cluster 2 x 2 X m belongs to the two-dimensional Ising models on a cylinder 
for which the eigenvalues of the transfer matrix are known in analytical form for any 
numberofchains [12], I n  thecasewhenfourchainsform thecluster under consideration, 
the dominant eigenvalues are equal to 

Ay) = 12 cosh(2K) cosh(4K’) + .\/z sinh(4K’) + {[2 cosh(2K) cosh(4K’) 

+ f i ~ i n h ( 4 K ‘ ) ] ~  - 4 sinhz(2K)}’/2][2cosh(2K) cosh(4K‘) 
- \5 sinh(4K’) + {[Z cosh(2K) cosh(4K’) - .\/T~inh(4K‘)]~ 

- 4 sinh2(2K)}’”1 (5) 
and 
A$*) = 4 sinh(ZK)[cosh(ZK) cosh(4K‘) 

+ {[cosh(2K) sinh(4K’)J2 + 1}1’21 exp(4K’) (6) 
where K = J/2kT and K’ = J’/ZkT. We use this cluster (as well as the subsequent 
clusters) with periodic boundary conditions to eliminate undesirable surface effects. 

The transfermatricesof theIsingmodelsoncylindersn x n X mwith transversesizes 
n = 3 and n = 4 have dimensions 512 and 65536, respectively. To solve the eigenvalue 
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Table 1. Critical temperature ofthe three-dimensional king model with spatially anisotropic 
interactions: the calculation bya phenomenological renormalization groupmelhod with use 
of the cluster pairs (1, 2). (2, 3) and (3, 4) and the extrapolation from equation (3); in the 
last column the non-physical values are included in parentheses. 

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.009 
0.008 
0.007 
0.006 
0.005 
0.004 
0.003 
0.002 
0.001 

2.32977 
2.19274 
2.05015 
1.901 17 
1.744 68 
1.57907 
1.40194 
1.20921 
0.99298 
0.73242 
0.70181 
0.66983 
0.63619 
0.60051 
0.56221 
0.52038 
0.47346 
0.41823 
0.34579 
0.33666 
0.32694 
0.31650 
0.30515 
0.29262 
0.27849 
0.261 97 
0.24148 
0.21248 

2.34298 
2.18445 
2.02275 
1.85737 
1.687 57 
1.51226 
1.32971 
1.13684 
0.92728 
0.683 15 
0.65494 
0.62556 
0.59473 
0.56211 
0.527 15 
0.48901 
0.44623 
0.39581 
0.32939 
0.32099 
0.31203 
0.30239 
0.29190 
0.28030 
0.26718 
0.251 81 
0.23268 
0.20548 

2.29052 
2.13485 
1.97665 
1.81538 
1.65029 
1.48023 
1.30338 
1.11654 
0.91317 
0.675 18 
0.64759 
0.61881 
0.58859 
0.55658 
0.52223 
0.48473 
0.44261 
0.39289 
0.32729 
0.31898 
0.31012 
0.30058 
0.290m 
0,27872 
0.26573 
0.25051 
0.23155 
0.20458 

(2.33242) 
(2,19440) 
(2.09029) 

1.58020 
1.45073 
1.28827 
1.10862 
0.90931 
0.67364 
0.64622 
0.61759 
0.58752 
0.55564 
0.52142 
0.48405 
0.44205 
0.39245 
0.32698 
0.31868 
0.30983 
0.30031 
0.28994 
0.27848 
0.265 5 1 
0.25031 
0.23138 
0.20444 

(0.84121) 

problem of these matrices which are real, symmetric and dense, we used an invariance 
of the subsystems under the transformations of the group 2, @Ta@ C4" (Z, is a group of 
spin inversions; T, is a group of translations in the transverse directions of a cluster; C4" 
is a group of rotations around the axis of a system at angles n / Z  and the reflections in 
planes through this axis; @ and Bare the symbols of the direct and semidirect products, 
respectively). By virtue of the indicated symmetry the matrices can be reduced to a block 
diagonal form in which the leading eigenvalues, as it turns out, are located in different 
subblocks; in the case n = 3 both subblocks have a dimension of only 13 and in the case 
n = 4 the largest eigenvalue A\4) lies in the subblock of 433rd order and Ai4) in that of 
372nd ordert. We have carried out these quasi-diagonalizations after which we per- 
formed numerically the solution of the transcendental equation (1) including the 
required diagonalization of the corresponding subblocks. 

In table 1 the critical temperature values that we calculated within a phenom- 
enological renormalization group theory approximation are collected; in the last column 
t Forthecluster,ofthenertsize,5 x 5 x cothetransfermatrixhasan0rder2~= 33554432andthedimension 
of each hvo subblocks containing the extreme eigenvalues equals 86056. 
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Table 2. A comparison of critical temperatures of the quasi-one-dimensional Ising model 
found by different methods. 

kTJJ 
~ ~~ 

~~ ~~~ 

Method J'lJ = 1 JJJ' = 10-1 J ~ J '  = 10-2 J/r = 10-3 

EBPA 191 2.4053 0.6959 0.3335 0.2072 
Table1.(3,4) 2.2905 0.6752 0.3273 0.2046 
Table 1. extranolation - 0.6736 0.3270 0.2044 
Exact [3] 2.25574 
Series [4] 2.2553 0.6715 0.325 

the three-point extrapolation results are given. In this connection it is necessary to note 
the following. Since we use a degenerate cluster 1 x 1 x w, some anomalies take place 
for small anisotropy of the system. For instance, when I' = J the (1, 2 )  estimate of a 
phase transition point is nearer to the truevalue than that with the (2,3) pair. Moreover, 
the extrapolation does not lead obviously to improvements up to J ' / J  = 0.7 (that is why 
we have put the formally extrapolated values in parentheses). However, on further 
increasein anisotropy (by aboutJ'/J = 0.5) theextrapolation(3) beginstogiveimproved 
values which, if judged by analogy with the two-dimensional variant (for a check we 
have performed such a calculation for the exactly solved flat anisotropic Ising model 
using strips with n = 1.2.3 and 4 and also with cyclic boundaries in finite directions), 
are the upper estimates of the rigorous critical temperatures; the percentage errors of 
these estimates monotonically decrease with decrease inJ'/J. 

3. Discussion 

We compare the results obtained with the most qualitative calculations available at 
present. For comparison we have constructed table 2.  From this table it is seen that our 
calculation perceptibly improves the estimates given by EBPA [9]. So, in the standard 
case J' = J the error in the determination of a phase transition temperature decreases 
from 6.6% (EBPA) to 1.5% (phenomenological renormalizationgroup; pair (3.4)). It is 
interesting to note the following. For a three-dimensionalIsingmodel with fully isotropic 
interactions there is a renormalization group calculation [13] also with the clusters 
n x n x m ( n  = 2,3 and 4) but with the screw (helical) boundary conditions of Kramers 
and Wannier (these boundary conditions break the symmetry Tn@ C,, and make the 
transfer matrix very sparse); this calculation gives kT,/J = 2.140 (pair (2,3)) and kT,/ 
J = 2.231 (pair (3, 4)), i.e. the screw boundary conditions lead, vice versa, to low 
estimates of the critical temperature. However, we return to the discussion of table 2.  
For small anisotropies the high-temperature series method [4] gives the most exact 
results. In the case of isotropic interactions the phase transition temperature determined 
by this method underestimates the accurate value by 0.02%. If we assume that for 
J ' / J  = 0.1 the exactitude here is preserved sufficiently well, then we come to the con- 
clusion that our extrapolated value exceeds the true critical temperature by only 0.3%. 
Since J'/J-+ 0 there are grounds to expect a further decrease in the error which is 
inserted in the approximation used, then it is rather clear that the results obtained in this 
paper are suitable for practical applications at least in the case of sufficiently anisotropic 
materials. 

In CoC1,. 2NC,H, crystals possessing a pronounced quasi-one-dimensional mag- 
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netic Ising system with ferromagnetic intrachain and antiferromagnetic interchain inter- 
actions, T, = 3.17 * 0.02 K and J/k = 10.6 * 0.6 K [14]. Hence, in keeping with the 
data of the previous section, IJ'l/J = 0.0069?k%E. This value agrees with the earlier 
estimates lJ'I/J = 0.008 [15] and lJ'i/J= 0.006 [I6]. In the compound FeCI,.2NCsHs 
with the analogous structure, the magnetic phase transition occurs at the temperature 
T, = 6.6 2 0.3 K and the constant of intrachain interactions is equal to J/k = 25 * 2 K 
[17]. Therefore, here, IJ'I/J = 0.0039?83:; with which, by and large, the ratio IJ'i/J= 
0.006 found in [ 181 from a treatment of data on a zero-field powder susceptibility agrees. 
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